What causes skin aging: Making sense of the latest research findings

Introduction

This is Part 1 of a 3-part series on the quest by scientists to find effective ways to fight skin aging. By understanding the leading cause of aging, mitochondrial decay, we can develop comprehensive solutions for long-term skin health.

Theories of aging

Aging is a consequence of changes that are harmful, progressive, and thus far irreversible in most living organisms, including humans. Age-associated damage occurs to biomolecules, cells, and organs. Diseases such as arthritis, osteoporosis, heart diseases, cancer, Parkinson’s disease, and Alzheimer’s disease occur more frequently with old age.

The biochemical mechanism of aging has long been an area of intensive research, and a number of theories of aging have been proposed, including the neuro-endocrine theory, which links aging to hormonal changes; immunological theory, which attributes aging to immune system dysfunction; telomerase theory, which relates to the shortening of chromosomes during cell division; and oxidative stress theory, which refers to free radical damage to cells.

Among these theories, it is reasonable to distinguish those that attempt to establish primary causes of aging from those that are secondary. For example, the telomerase theory may be secondary since the decrease in telomerase activity can be caused by the increase in cellular oxidative stress.

In gerontology, the study of aging, oxidative stress is increasingly recognized as the primary cause of aging.

The role of mitochondrial decay in aging

If oxidative stress is indeed the primary factor in skin aging, it is important to understand its roots. Scientists now believe that oxidative stress may be caused by mitochondrial decay. Mitochondria, the chief producers of both energy and oxidants inside the cell, play a critical role in the process of aging.

As energy producers, mitochondria convert unusable forms of energy into a usable chemical form known as adenosine triphosphate (ATP), which is required for all vital cellular chemical reactions throughout the body. During the metabolic cycle of ATP production, oxidants are released from the mitochondria as harmful by-products that can damage important biomolecules, such as DNA, lipids, and proteins. At the same time, the mitochondria themselves are also victims of this metabolic cycle of ATP production as they are highly susceptible to damage by the oxidants thus released.

Over time, largely due to cumulated damage by the oxidants, the functional capabilities of mitochondria deteriorate; the production of ATP declines; and the release of oxidants increases. The latter inflicts greater damage to the mitochondria, which in turn results in accelerated oxidant production. This is the vicious cycle of mitochondrial decay. If left unchecked, mitochondrial decay leads to cumulative damage in cellular biomolecules, resulting in a host of age-related diseases.

Effects of mitochondrial decay on the skin

The skin is the body’s largest organ. The consequence of cumulative damage in skin cell biomolecules is a corresponding increase in the depletion of important extracellular components, such as collagen, elastin, and hyaluronic acid, among others. The loss of these significant components is manifested in the appearance of wrinkles, fine lines, droopiness, pigmentation, puffiness, skin inelasticity, enlarged pores, dryness, and a dull skin tone.

Conclusion

An increasing amount of scientific evidence confirms that mitochondrial decay is the fundamental cause of aging; therefore, scientists are endeavoring to find remedies to reverse the declining functional capabilities of mitochondria due to aging. In Parts 2 and 3 of this series, we will explore what scientists have accomplished in this direction.

More information on mitochondrial decay and theories of aging can be found at these independent websites:

Nature’s contribution to advanced skincare: the Schisandra berry

By now, you’ve likely heard the growing buzz about the Schisandra berry, which is finally beginning to get the widespread attention it deserves, outside the scientific community. It is not just the next disposable “superberry”; Schisandra has been proven to have a significant, positive effect on aging skin.

The Schisandra berry has long been recognized as one of the 50 fundamental herbs of traditional Chinese medicine, and as the key to maintaining youth and radiance. It is now regarded as a vital adaptogen that helps the body achieve a balanced state and adapt to physical, mental, environmental and other stresses.

The Schisandra berry has exciting qualities and applications relating to its status as an adaptogen. It helps the body’s cells maintain and normalize the optimum conditions for their vital functioning. The Schisandra berry is naturally rich in antioxidants, and research suggests that it acts as an antioxidant-site stimulator. In this role, it has been seen to increase antioxidant activity throughout the body, helping fight free radical damage not only by providing its own antioxidants, but also by helping to stimulate antioxidants already present in the body – unlike other, supposed “superberries”.

So how does this affect our skin as we age?

Aging is a phenomenon that occurs in the body’s cells. Its effects are more apparent on the skin, body’s largest organ, and especially noticeable on the face. Aging brings about the depletion of cellular components (such as collagen, hyaluronic acid, etc.), oxidative damage, and inflammation – causing a loss of elasticity, pigmentation, radiance, and other visible signs of aging.

According to extensive research, Schisandra has been found to be “a safe and effective ingredient for the prevention and treatment of hyperproliferative and inflammatory skin conditions and offers a new concept for personal care cosmetics” (Quirin et al.).

However, concentrations of the key compounds, (-) Schisandrin B and Schisandrin A, in the original berries are minute. Ground Schisandra berries, berry juice, or Schisandra extracts collected by ordinary methods contain insignificant amounts of the potent compounds, thereby limiting the benefits to the skin. It is only through a proprietary extraction process that the anti-aging properties of the Schisandra berry can be absorbed by the skin.

Consumer Reports rates anti-wrinkle serums

Earlier this month, Consumer Reports released the findings of their recent anti-wrinkle serum tests. The verdict: that the products they evaluated fell short on their claims. Citing inconsistent results and only minor improvements to the wrinkles of their research subjects, the organization all but dismissed anti-aging products entirely. If readers caught only the headlines, they’d find themselves considerably misinformed about the efficacy of certain products available on the market today.

It’s difficult to argue with some of the points brought up in the report, which suggests that consumers focus on moisturizing and sun protection. However, Consumer Reports neglects to investigate the reason why the serums they tested failed: the products don’t necessarily address anti-aging holistically. It is a stretch to imply that anti-wrinkle serums don’t work; after all, Consumer Reports tested only nine well-known brands, none of which take a comprehensive approach by targeting all accepted causes of skin aging.

Scientific research in the area of gerontology has found that a number of factors contribute to skin aging, including inflammation, external adverse environmental factors, and the depletion of cellular components, such as collagen, elastin, and hyaluronic acid. Oxidative (free radical-induced) damage is often cited as a culprit, and products are loaded with antioxidants accordingly, despite their limited ability to produce results.

Scientists have now discovered the fundamental cause of skin aging: mitochondrial decay. For that reason, an effective anti-aging serum must include ingredients to address all causes of skin aging, but particularly mitochondrial decay. Fortunately for consumers, potent extracts from the schisandra berry have been proven to be effective in reversing age-related mitochondrial deterioration – so a real anti-wrinkle serum, one that lives up to its promises, does indeed exist.

Theories of aging: What you need to know

A recent article published by DailyBeauty explored five well-known theories of aging: inflammation, lifestyle, hormones, antioxidants, and detoxification. Though all are worthy of discussion, perhaps the most important theory, mitochondrial decay, was not mentioned. This dark horse in the race against skin aging – and indeed aging more generally – deserves the attention of women who are motivated to look and feel their very best at every age.

The mechanism of aging has long been an area of intensive research, and although a number of theories have been proposed, mitochondrial decay has widely become regarded as the leading cause of skin aging.

The concept may sound complicated, but it is surprisingly simple. Mitochondria are the energy-producing organelle of every cell. Cells make up every organ and all living cells have mitochondria. In fact, there are thousands of mitochondria per cell. Their primary job is to generate ATP, or fuel, through various energy cycles that involve nutrients and vitamins. ATP is needed for every movement, thought and action we make, yet very little ATP can be stored in the body.

In the natural process of oxidation (turning oxygen into energy), the mitochondria generate free radicals – highly reactive, unstable molecules that cause damage to healthy cells, leading to internal aging as well as the appearance of visible signs of external aging. As we age, the mitochondria become larger, less efficient and fewer in number. As such, ATP production declines and may eventually lead to cell death.

As organs cannot borrow energy from one another, the efficiency of each organ’s mitochondria is essential to its repair processes and functions. If an organ’s mitochondria fail, then so does that organ. The skin is the largest organ in the body, so the enhancement and protection of actual mitochondrial function is instrumental in preventing and slowing skin aging.